WBS	TEST	& ACCE	PTAN	CE C	RITE	RIA
PD.JC	CS					

Test Code					
Sheet	5	0	3	1	3
Number					

Issue No: 3 Date of issue: April 1994

Sheet 1 of 3

TEST CODE SHEET

1. <u>TYPE OF TEST(S)</u>

Dimension - lifting effort.

2. <u>BYELAW REQUIREMENT FOR FITTINGS</u>

Byelaw 42

Every float operated valve shall (e) have a float which (ii) has a lifting effort such that when not more than half immersed, the valve is capable of drop tight closure

3. BRITISH STANDARDS OR WATER SPECIFICATION, DEEMED TO SATISFY BYELAW REQUIREMENTS

(See Water Supply Byelaw Guide)

3.1 Fittings with 'kitemarks' which are deemed to satisfy the requirements of byelaws are listed in the directory.

4. <u>TEST PROCEDURE</u>

4.1 Tests applicable to the following fittings-

FLOATS FOR FLOAT OPERATED VALVES, all applications

- Plastic
- Copper

(A) **FLOATS (PLASTICS) FOR FLOAT OPERATED VALVES** (Derived from BS 2456, Section 3.1 Appendix B).

TEST METHOD

Lifting effort test. Plastic floats, both spherical and no spherical shall be tested by the method specified below;

The lifting effort developed by plastic floats whether spherical or non-spherical, shall be calculated using the following formula;

$$E_L = 9.8 \quad \left(\frac{V.10^{-6}}{2} - M\right)$$

where

- E_L is the lifting effort, measured in newton:
- V is the volume of the float, excluding any part of the boss which projects outside the surface, measured in cubic millimetres:
- M is the mass of the float, including the boss in kilograms, after passing the hot water test in 4.1.
- \underline{NOTE} The factor 10^{-6} converts the half-volume of the float to the mass in kilograms of an equal volume of water. The factor 9.8 converts mass in kilograms to force in newtons.

Test Code					
Sheet	5	0	3	1	3
Number					

Issue No: 3 Date of issue: April 1994

Sheet 2 of 3

5. <u>ACCEPTANCE CRITERIA</u>

Plastic floats shall have a lifting effort of not less than that shown in Table 1 for the appropriate BS type reference.

Table 1. Minimum lifting efforts									
1.	2.	3.							
BS type reference	Minimum lifting efforts								
102S 102NS 114S 114NS 127S 127NS 152S 152NS	mm 102 - 114 - 127 - 152 -	N 2 2 2.9 2.9 4.2 4.2 7.1 7.1							
Key to column 1 (a) the number corresponds to the diameter of the float in millimetres: (b) the letter 'S' refers to a spherical float: (c) the letters 'NS' refer to a non-spherical float									

(B) **<u>FLOATS FOR BALLVALVES (COPPER)</u>** (Derived from BS 1968, Section 2, and Appendix)

TEST METHOD

Lifting effort test. Spherical copper floats shall be tested by the method specified below.

The lifting effort developed by spherical copper floats is calculated as follows;

Diameter of spherical floats - The average outside diameter of the shell measured at two axes at right angles to each other and clear of the jointing seam.

<u>Volume</u>- The volume of water in cubic inches, taken to the nearest cubic inch, displaced when the shell (float with no boss) is completely immersed.

<u>Free-floating volume</u>- The volume of water in cubic inches, taken to the nearest inch, displaced when the shell (float with no boss) is resting in water.

Test Code					
Sheet	5	0	3	1	3
Number	-				

Issue No: 3 Date of issue: April 1994

Sheet 3 of 3

<u>Useful volume</u> - Half the volume less the free-floating volume taken to the nearest cubic inch.

Lifting Effort - The useful volume converted into weight in pounds at the rate of 0.036 lb per cubic inch.

Nominal outside diameter of float	Volume of sphere	Class A				Class B				Class C			
		Weight of shell (min)	Free- floating volume	Useful volume	Lifting effort	Weight of shell (min)	Free- floatin g volume	Useful volume	Lifting effort	Weight of shell (min)	Free- floatin g volume	Useful volume	Lifting effort
in.	cu.in	lb	cu.in	cu.in	lb	lb	cu.in	cu.in	lb	lb	cu.in	cu.in	lb
4½	48	0.25	7	17	0.61	0.25	7	17	0.61	0.39	11	13	0.46
5	65	0.328	9	23	0.84	0.328	9	23	0.84	0.515	14	18	0.65
6	113	0.476	13	43	1.56	0.476	13	43	1.56	0.843	23	33	1.19
7	180	1.074	30	60	2.16	1.074	30	60	2.16	1.187	33	57	2.05
8	268	1.425	40	94	3.38	1.425	40	94	3.38	1.875	52	82	2.95
9	382	1.782	50	141	5.07	1.782	50	141	5.07	2.06	57	134	4.82
10	524	2.197	61	201	7.23	2.197	61	201	7.23	3.62	100	162	5.83
11	697	2.755	77	271	9.75	2.755	77	271	9.75	4.21	117	231	8.31
12	905	3.207	89	363	13.06	3.207	89	363	13.06	4.85	135	317	11.41

TABLE 1. SPHERICAL COPPER FLOATS

 \underline{NOTE} The lifting effort figures are calculated for the minimum weight of shell in each class.

5. <u>ACCEPTANCE CRITERIA</u>

Spherical copper floats shall have a lifting effort of not less than that shown in Table 1 for the appropriate nominal outside diameter of float.